APPENDIX B Time Advancement

For a nondeforming mesh, Equation (A-1) can be written as
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The time term can be discretized with backward differencing:
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where the superscripts indicate time level. When ¢ = 0 the method is first-order tempo-

rally accurate; when ¢ = 1/2 the method is second-order accurate. This equation is
implicit because the right-hand side is a function of the unknown flow variables at time
level n + 1.

The CFL3D code is advanced in time with an implicit approximate-factorization
method. The implicit derivatives are written as spatially first-order accurate, which results
in block-tridiagonal inversions for each sweep. However, for solutions that utilize FDS the
block-tridiagonal inversions are usually further simplified with a diagonal algorithm (with
a spectral radius scaling of the viscous terms).

Because of the method which the left-hand side is treated for computational efficiency
in steady-state simulations (approximate factorization, first-order accuracy), second-order
temporal accuracy is forfeited for unsteady computations. One method for recovering the
desired accuracy is through the use of sub-iterations. Two different sub-iteration strategies
have been implemented in CFL3D. The first method is termed “pseudo time sub-iteration
(t-TS)”. The method is also often referred to as the “dual time stepping” method. The

other method, termed “physical time sub-iteration (z-TS),” follows Pulliam.?®

For the T-TS method, a pseudo time term is added to the time-accurate Navier-Stokes
equations.
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This equation is then discretized and iterated in m, where m is the sub-iteration counter.
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In Equation (B-5), ¢ and ¢” govern the order of accuracy of the physical and pseudo
time terms, respectively. In practice, the pseudo time term is treated as first order (i.e.,
¢’= 0), but the general form is shown here for completeness. As m — oo, the pseudo time

. . . . 1 1 N . .
term vanishes if the sub-iterations converge and Qm L Qn "1 If R is linearized with
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and the quantity —(1 + ¢)Q "/ (JAr) is added to both sides of Equation (B-5)), then Equa-
tion (B-5) becomes
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Equation (B-7) is approximately factored and written in primitive variable form; it is
solved as a series of sweeps in each coordinate direction as
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where the primitive variables are
p
u
q=|y (B-16)
w
LP]
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The quantity AT is based on a constant CFL number set by the input parameter cfl_tau

(See “LT5 - Time Step Parameters” on page 21). Multigrid is used to drive Aq"" to zero in
a reasonable number of sub-iterations.

In the t-T'S method, Equation (B-3) is merely iterated in m, where m is the sub-itera-
tion counter:
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m+1_Qn)_(|)(Qn_Qn—1) m 1

(1+¢)(Q _
TA = R(Q" ) (B-21)

The quantity —(1 + ¢)Qm/ (JAt) is added to both sides, the residual is linearized, and the
equation is approximately factored and written in primitive variable form as
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Asm— oo, q" HRN q" *1 When only one series of sweeps is performed, q"' = q" and
the standard time-accurate CFL3D scheme is recovered (i.e., no sub-iterations). Unlike the
T-TS method, this sub-iteration procedure (Equation (B-22) through Equation (B-25)) uti-
lizes only one time step: the physical time step A¢ (= constant).

Prior to the execution of Equation (B-25) in the code, the corrections are constrained
in order to maintain the positivity of the thermodynamic variables p and p . For example,
the update to pressure is taken as

-1
} (B-26)

whenever Ap/ p" < o, . Currently, o, = —0.2 and ¢. = 2.0.
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In the limit of Ap/p" — —co, p" s p" /2. This modification improves the robust-
ness of the method by allowing it to proceed through local transients encountered during
the convergence process which would otherwise terminate the calculation.

When running steady-state computations (dt < 0), the time step advanced locally in
each cell is related to the input CFL number by

CFL

At =
[VElzy +|Vnlz, + [V

(B-27)
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where
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where U = U/|VE|, V = V/|Vn|, W = W/|V{| and U, V, and W are defined in
Equation (A-7) in Appendix A. The viscous scaling terms (the last term in each equation
of Equation (B-28)) are only used when the solution includes viscous terms. They arise
from a spectral radius scaling (see Coakley'#).
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