CHAPTER 8 Time-Accuate Computation:s

Although most computations being performed today are for steady-state cases, it
appears as though CFD will be used more and more for unsteaeyaccurate cases in
the future. Therefore, since this realm is still samat in its infingy, this chapter has been
written in order to xplore in detail what is currently kmm about the subject, reledi to
CFL3D’s capabilities.

CFL3D has been usedatensvely for time-accurate computationdt (> 0). See, for
example, reference 33wb types of sub-iterations, called-TS” and “T-TS” are cur-
rently implemented in the code and are also described in this reference. This chapter
describes the &dcts of the diierent types of sub-iterations, as well as the gyafter pur-
suing time-accurate computations in general.

When performing steady-state computations, the primary numerical accssae
about which the user needs to be concerned is that of spatial gc€&eaerallythe user
runs a problem on a series of sucoedgifiner grids. As long as the solutions are fully
converged on each grid, the user can get a clear picture of the acafir@solution on a
given grid. In &ct, the user can determine the numerical global order of agdwarsing
a series of at least three gridesm the same familgnd plotting some global quantity of
interest as a function of a measure of theerage grid spacing, such as

1/ (,/number of grid pointg for 2-d or1/ (3/number of grid pointk for 3-d, on a log-log
plot. The slope of the plotted line represents the spatial order of agcairde scheme.
When the standard = —1/3 scheme is empy@d, CFL3D has been demonstrated in the
past to be globally approximately second-order accurate for most gridsvétothis is
problem-dependent and the accyraan dgrade som&hat on grids that are too coarse or
on grids with &tremely sgere stretching.

For time-accurate problems, temporal accurédecomes an additional numerical
accurag issue of concern for the usélow, not only does the ffct of the grid need to be
assessed for each problemt khe efect of the time step as well. Additionalllgecause
CFL3D is an implicit code and empyt® approximatedctorization, linearization aned-
torization errors are introduced during each time step, which caadiethe accurgof
the time-accurate simulation. (ladt, if no sub-iterations are empéa, the best that can
possibly be hoped for is first-order temporal accgjakhis is wly sub-iterations are gen-
erally recommended for time-accurate computations. Sub-iterations “itevaye the lin-
earization anddctorization errors. The more sub-iterations performed, the more accurate
the simulation. But he mary sub-iterations are enough? And which type of sub-iteration
scheme wrks the best? Hopefullyhis chapter will help to answer these questions.
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CHAPTER 8 Time-Accurate Computations

8.1 Genenl Effects of Numerical #ametes

A graphic representing the generaleets of sub-iterations, time step, and grid is
shavn in Figure8-1. Here, some “quantity of interest” is ghoas a function of time step.
For example, the quantity could represent Strouhal number for an unsteady eaiyduar
der case. Say that the user ran a series of computations wenaggd, using three sub-
iterations. Each succegsicomputation used a smaller and smaller time step and aach w
completely comerged to periodic quasi-steady-state. If the user plotted a global quantity
of interest as a function of time step, a eulike the lever-most cure in the figure might
be obtained. (Note that the figure sisahe quantity of interest increasing with decreasing
time step, bt the trend could also be in the opposite direction, depending on the case and
the quantity of interest chosen.)
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Figure 8-1. Time accurag trends.

Now say that the user repeated the entire series of computakoept this time using
six sub-iterations instead of three. A caisimilar to the second cw@¥rom the bottom of
the figure might be obtained. Finallyith an infinite number of sub-iterations per time
step, the user ould obtain the dashed cewwhich represents the best possible solution
on that grid Note that, using a g&n time step, an increasing number of sub-iterations
yields an increasingly better answaut even the best answer (with infinite sub-iterations)
is still in error from the answer using an infinitely-small time step.

The dashed line should befeseither first or second order accurate in time (depending
on the accuracinput by the user in the input file)utoonly for suficiently small time
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steps. This is what is graphically represented by the left horizontal arrihe figure. If
the time step is too Ige, the solution may nokkibit the expected temporal accurac

It is evident from this figure that, if arxeeemely small time step is tak, then sub-
iterations are not as beneficial as whegdatime steps are tak. The solution is already
pretty good. Hence the user needs toermkade-dfbetween accurgcand eficiengy. An
extremely small time step can be éak lut at a greater cost, or adar time step can be
taken with some dgradation in accurgc And, sub-iterations may or may not conitid
much tavard imprwing accurag, depending on the time step. Also, at one time step a cer-
tain number of sub-iterations may be enougit ab a diferent time step that same number
may be either institient or overkill.

The efect of the grid size is also represented in Fidifie On finer and finer grids,
the location of the dashed cerwill change, approaching the “true” answer on an infi-
nitely-fine grid. (Note that the figure she the quantity of interest increasing with finer
grids, lut it could also go the opposite direction, depending on the case and the quantity of
interest chosen.) The standatd= —1/3 CFL3D scheme should generally bedapa-
tially second-order accurate onfstiently fine grids. The filled-in circle in the figure rep-
resents the “true” answer on an infinitely fine grid with an infinitely small time step.
Obviously, the user wuld generally lile to get as close to this answer as possibteytth
a reasonablexpenditure of resources.

8.2 Effect of Sub-iteations Vith Time Step and Grid Size

The efect of sub-iterations with time step and grid sizex@&ed in this section for a
sample test case of laminarvilmver a circular glinder at Rgnolds number 1200 and

M, = 0.2. The input file, for a relately fine O-grid witht-TS multigrid sub-iterations,
is given here:

cyl new. bin
pl ot 3dg. bin
pl ot 3dq. bin
cfl 3d. out
cfl3d.res
cfl3d.turres
cfl 3d. bl omax
cfl 3d. out 15
cfl 3d. prout
cfl 3d. out 20
ovrlp.bin
patch. bin
restart.bin
circ cylinder

XMACH ALPHA BETA REUE,ML TINF, DR | ALPH I H ST
0.2000  00.000 0.0  0.0012 460. 0 0 0
SREF CREF BREF XNC YMC ZMC
1.00000 1.00000  1.0000 0. 00000 0. 00 0. 00
DT IREST | FLAGTS FMAX IUNST  CFLTAU
+0. 1000 0 000  05.0000 0 5.
NGRID NPLOT3D  NPRINT  NWREST | CHK 12D NTSTEP I TA
1 1 1 6100 0 1 0100 +2
NCG IEM I|ADVANCE  IFORCE IVISC(l) IVISC(J) IWVISCK)

CFL3D Users Manual 141



CHAPTER 8 Time-Accurate Computations

2 0 0 1 0 1 1
DI M JDI'M KDl M
2 193 97
[LAMLO | LAWHI JLAMLO  JLAMHI KLAMLO  KLAWHI
0 0 0 0 0 0
INEWG | GRIDC IS Js KS IE JE KE
0 0 0 0 0 0 0 0
IDIAG(1) IDIAGJ) IDIAGK) IFLIMI) IFLIMJ) [|FLIMK)
1 1 1 0 0 0
IFDS(1) IFDS(J) IFDS(K) RKAPO(1) RKAPO(J) RKAPO(K)
1 1 1  0.3333  0.3333  0.3333
GRID NBCIO  NBCI DI M NBCJO  NBCJDI M NBCKO NBCKDIM | OVRLP
1 1 1 1 1 1 1 0
10 GRID SEGMENT  BCTYPE JSTA JEND KSTA KEND NDATA
1 1 1001 0 0 0 0 0
IDM GRID SEGMVENT  BCTYPE JSTA JEND KSTA KEND NDATA
1 1 1002 0 0 0 0 0
JO: GRID SEGMENT  BCTYPE | STA | END KSTA KEND NDATA
1 1 0 0 0 0 0 0
JD'M GRID SEGMENT  BCTYPE | STA | END KSTA KEND NDATA
1 1 0 0 0 0 0 0
KO: GRID SEGMENT  BCTYPE | STA | END JSTA JEND NDATA
1 1 2004 0 0 0 0 2
TWI'YPE oQ
0. 0.
KDOM GRID SEGMVENT  BCTYPE | STA | END JSTA JEND NDATA
1 1 1003 0 0 0 0 0
MSEQ  MGFLAG | CONSF MIT NGAM
1 1 0 0 01
| SSC EPSSSC(1) EPSSSC(2) EPSSSC(3) | SSR EPSSSR(1) EPSSSR(2) EPSSSR(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3
NCYC — MGLEVG NEMGL NI TFO
10 03 00 000
M T1 M T2 M T3 M T4 M T5 M T6 M T7 M T8
01 01 01 01 01 1 1 1
1-1 BLOCKI NG DATA:
NBLI
1
NUVBER GRID : ISTA JSTA KSTA IEND JEND KEND [SVAL |SVA2
1 1 1 1 1 2 1 97 1 3
NUVBER GRID : ISTA JSTA KSTA IEND JEND KEND [|SVAL |SVA2
1 1 1 193 1 2 193 97 1 3
PATCH SURFACE DATA:
NI NTER
0
PLOT3D OUTPUT:
BLOCK | PTYPE ISTART IEND |INC JSTART JEND JINC KSTART KEND KINC
1 0 1 01 1 01 999 1 1 999 1
MOVI E
0
PRI NT QUT:
BLOCK | PTYPE ISTART IEND [|INC JSTART JEND JINC KSTART KEND KINC
1 0 1 01 1 01 999 1 1 999 1
CONTROL SURFACE:
NCS
0

GRI D | START IEND JSTART JEND  KSTART KEND [WALL | NORM

The initial study is to ivesticate the gk&ct of number and type of sub-iterations on the
sub-iteration covergence of residual and drag. Theseels are printed out automatically
to the filecf I 3d. subi t _res (unit 23). (See Sectiob.2.2.)
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8.2 Effect of Sub-iterations With Time Step and Grid Size

For this studythe follawving runs were performed (the coarser grid consistyvefye
other point from the fine grid):

Grid At Sub-iteration ype
97x49 0.02 t-TS, multigrid
97x49 0.02 t-TS, no multigrid
97x49 0.02 {-TS, multigrid
97x49 0.02 1-TS, no multigrid
97x49 0.10 t-TS, multigrid
97x49 0.10 t-TS, no multigrid
97x49 0.10 t-TS, multigrid
97x49 0.10 1-TS, no multigrid
97x49 0.50 t-TS, multigrid
97x49 0.50 t-TS, no multigrid
97x49 050 1-TS, multigrid
97x49 050 1-TS, no multigrid
193x97 0.10 t-TS, multigrid
193x97 0.10 t-TS, no multigrid
193x 97 0.10 1-TS, multigrid
193x97 0.10 1-TS, no multigrid

When multigrid vas emplged, a 3-lgel V-cycle was used.

Figure8-2 shavs the residual for density and the drag ioeint as a function afcyc
(number of sub-iterations +1) at a time step of 0.02. Thisaslg fine time step, yielding

over 1000 steps per period. At this time step, both & andt -TS with multigrid con-
verge the drag witmcyc = 4 (3 sub-iterations) ant-TS andt-TS without multigrid
require abouhcyc = 6 (5 sub-iterations). The residual alsovages quickr with multi-
grid, as &pected. Note that thee TS with multigrid has a slightly better residual cen
gence rate than-TS with multigrid at this time step.

At a higher time step aft = 0.10, the trends in FiguBe3 are similar: both-TS and
T-TS with multigrid conerge the quickst, requiring aboutcyc = 5, while the non-multi-
grid methods require abontyc = 14-16. At this time step, the residual fofTS with

multigrid corverges slightly better thaty TS with multigrid. This time step corresponds to
a little over 200 steps per period.
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Coarse grid, dt=0.02

Coarse grid, dt=0.02
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Figure 8-2. Coarse grid residual and drag damént histories for a single time step of
At = 0.02.

Coarse grid, dt=0.10 Coarse grid, dt=0.10
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Figure 8-3. Coarse grid residual and drag damént histories for a single time step of
At = 0.10.
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8.2 Effect of Sub-iterations With Time Step and Grid Size

At the highest time step aft = 0.5, Figure3-4, the multigrid sub-iterations require
aboutncyc = 12, while the non-multigrid sub-iterations are not fullyveged @en after

ncyc = 40. Also note from Figur&-4(a), at this time step the residual fef S with multi-

grid method nev does not corerge as well as either-TS method. This time step corre-
sponds with less than 50 steps per period.
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Figure 8-4. Coarse grid residual and drag damént histories for a single time step of
At = 0.50.

Results for the find93x 97 grid withdt = 0.1 are shon in Figure8-5. Results are
gualitatvely similar to those in Figurg-3. Havever, on this finer grid, more sub-iterations
are required to coerge the drag: 6-8 iterations for multigrid and welep 20 iterations
for non-multigrid.

With a 3-level V-cycle, the multigrid method costs roughly 1.5 times as much as the
non-multigrid method. (The-TS is only maginally more &pensve thant-TS, so thg
may be considered essentially a@lent.) Hence, at the smallest time steltof 0.02,
the user is roughly at a breakea point in terms of whether it is mordigent to use mul-
tigrid or no multigrid. Havever, at the lager time steps, using multigrid is clearly benefi-
cial: for exkample, adt = 0.1 (around 200 steps percte), multigrid conerges the drag in
approximately 0.36 the number of sub-iterations on the coarse grid at 1.4 times the cost;
this means a sags of almost 50%! The gegs is &en greater on the fine grid. Due to
this substantial séngs, the remaining results will include only cases utilizing multigrid.
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Fine grid, dt=0.10

Fine grid, dt=0.10
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Figure 8-5. Fine grid residual and drag cbeient histories for a single time step of
At = 0.10.
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Figure 8-6. Coarse grid Strouhal number and lift dazént histories for fully periodic
solutions usingA\t = 0.10.
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8.2 Effect of Sub-iterations With Time Step and Grid Size

Figure8-2 through Figur®-5 give a feel for the &ct of sub-iterations on the oger-
gence to the ne¢ physical time steffor one iteation, but what is the ééct of the number
of sub-iterations oglobal quantities, @er a long period of time? Figu86 shavs Strou-
hal number and maximum lift cdifient (in absolute alue) as a function afcyc for dt =
0.10 on the coarse grid, where the solution is obtained usingvdrevglue ofncyc over a
long time (until periodic quasi-steady-state is reached). If at least 4 sub-iterations are run
for this caser{cyc = 5), botht-TS andt-TS with multigrid conerge to the same result.
This is consistent with the results for maximum lift doéfnt shavn in Figure8-3(b).
However, if less than this number of sub-iterations is run, thenn{h& method appears to
give the better result.

For the higher time step aft = 0.5, results are stvm in Figure8-7. If ncyc is less
than about 7 for this time step, bathr'S andt-TS sub-iterations with multigrid yield
non-ptysical solutions (not shen in the figures). & example,t-TS yields a highly non-
regular lift cycle, whilet-TS yields a rgular lift cycle with non-zero mean. At leastyc

= 15-20 is required to coamge the sub-iterate schemes sfifiently at this time step.
This is roughly consistent with the results in Fig8+€(b). If less than this number of sub-
iterations is used, then the TS method gies the better result. This is the opposite result
from that gven abee fordt = 0.1, lut it is consistent with the trend seen in the residual
plots of FigureB-2(a), Figure3-3(a), and Figur8-4(a). In other wrds, it appears that the
t-TS method may require less sub-iterations attime steps, whila -TS requires less
sub-iterations at higher time steps.
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Figure 8-7. Coarse grid Strouhal number and lift daeént histories for fully periodic
solutions usingAt = 0.50.
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Other time-accurate circulaylmnder cases with tutbence model(s) empjed (not
shavn), have revealed similar trends to the study smohere. One point @rth mentioning
in connection with these other cases is that, in some instancés] $ienethod with mul-
tigrid has been seen to eithevelge or else ge nonplysical answers,egardless of the
number of sub-it@tions talen when the time step is too ¢g. Unfortunatelydetermin-
ing what time step is too Ige remains eluge at this point. fiial and error seems to be the
only way to determine it for such cases. Therefore, since {h8 method has nokkib-
ited such errant betimr, it appears that, as a general rule, the safest bet is to go with the
1-TS method rather thanTS.

From this studycombined with eperience running the CFL3D code for time-accurate
cases, the follwing conclusions are made:

1. In general, it is recommended that the user eynpialtigrid when using sub-itera-
tions.

2. The lager the time step (the less steps per period), the more sub-iterations are required
to corverge the sub-iterate scheme.

3. The lager the grid, the more sub-iterations are required tvetge the sub-iterate
scheme.

4. t-TS andt-TS are roughly equalent in their ability to corerge a quantity lik

“drag”. However, for lowering residualt-TS is slightly more dicient thant-TS at
small time steps, while theverse is true at higher time steps.

5. t-TS appears to require slightly less sub-iterations at time steps, whilet-TS
appears to require slightly less sub-iterations at higher time steps.

6. Since it is not possible to knoin adwance what time step is g and what is “high”
(in connection with conclusions 4. and 5.) and sind& has been kmen tonot con-
veme regardless of the number of sub-iterations for some cases when the time step is
too high, it is recommended thedTS (with multigrid) be used in practice as a general
rule.

Also, the follaving recommendation is made. When performing time-accurate compu-
tations,alwaysmonitor thecf | 3d. subi t _res file (unit 23) in order to insure that the sub-
iteratve scheme is cerrging suficiently. Additionally, it is recommended that the user
perform a time step studydgry dt), along with the usual grid density study determine
the solutions sensitrity to time step.
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8.3 Convergence Criterion for Sub-iterations

8.3 Cornvergence Criterion for Sub-itations

The sub-iteration equation (Equation (B-7), wgth= 0) is

nl ,1+ m _
5t At *aA+5,B+5,C|AQ" = o

DAt
— (1 + (p)(Qm_Qn) + R(Qm)

(pAQn_l

JAt JAt

n+1

for m - o, Qm - Q , and the left-hand side, which is the sub-iteration residual,

Raubit(Q™) , approaches 0. Write the sub-iteration residual as

Rupn(@) = 2291+ 070N, gy e
Form - oo,
Roupit(Q™) O (pAJ%:_l S (p)(?An,: =9, R(Q™) (8-3)
where(pAJ%:_1 S (p)(?An: el O discrete- %—? :
Then
% = R(Q™) ~Rypi(Q™) 80
where aa—Qtn = R(Qm) [ discrete Navier-Stokes equatic. Therefore, to insure that the

discrete Naier-Stokes equations are seld accuratelyRsubit(Qm) « R(Qm) are needed.
These walues are calculated in the cod@subit(Qm) (for Q = density) is output to

cfl 3d_subit.res, while R(Qm) (for Q = density) is output to the usspecified file on
unit 12 (typically calledf | 3d. r es in the sample input files).
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